Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A facile synthesis of 2-oxazolines using a PPh₃-DDQ system

Quancai Xu^a, Zhengning Li^{a,b,*}

^a College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China ^b Liaoning Key Laboratory of Bioorganic Chemistry, Dalian University, Dalian 116622, China

ARTICLE INFO

ABSTRACT

Article history: Received 10 July 2009 Revised 14 September 2009 Accepted 22 September 2009 Available online 25 September 2009

Keywords: 2-Oxazoline Synthesis DDQ Triphenylphosphine

Embedded in natural products of a wide range of biological activities¹ and also employed as synthetic intermediates,² 2-oxazolines are important functional compounds in organic chemistry. They can act as masked amino alcohols and carboxylic acids in organic reactions, and are easily unmasked to the acid or 2-amino alcohols upon hydrolysis.^{3,4} The hydrolyzable property also makes 2-oxazolines desirable precursors of carboxylic acids in pharmacology. Furthermore, chiral oxazolines have found extensive applications as auxiliaries and ligands in asymmetric synthesis in recent years.⁵

Due to the importance of 2-oxazolines, considerable efforts have been devoted to their synthesis. One synthetic method involves the reaction between amino alcohols and carboxylic acid derivatives like esters^{6–9} and nitriles.¹⁰ Another conceptually simple and synthetically versatile method is the dehydrative cyclization of *N*-(2-hydroxyethyl)amides. In the latter process, it is necessary to first convert the hydroxyl group into a good leaving group, such as a chloride (using SOCl₂¹¹ or PPh₃/CCl₄,¹²) or a sulfonate (using TsCl/Et₃N). Subsequently, an intramolecular S_N2 reaction under basic conditions¹³ or in the presence of Lewis acids provides the 2-oxazolines.¹⁴

Even though many syntheses of 2-oxazolines have been reported, the exploration of new methods has been very active in recent years. Linclau reported that N,N'-diisopropyl carbodiimide (DIC) was an efficient dehydrating reagent in the transformation of N-(2-hydroxyethyl)amides into 2-oxazolines via an isourea.¹⁵ Alternative dehydrative reagents reported for this transformation

A facile and efficient synthesis of 2-oxazolines from N-(2-hydroxyethyl)amides using a triphenylphosphine–2,3-dichloro-5,6-dicyanobenzoquinone (PPh₃–DQQ) system is described. The reaction proceeds under neutral and mild conditions, and excellent yields are obtained.

© 2009 Elsevier Ltd. All rights reserved.

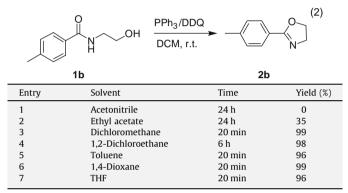
are DAST,¹⁶ Deoxo-Fluor reagent,¹⁷ or 2-chloro-4,6-dimethoxy-1,3,5-triazine,⁶ and PPh₃/DEAD.¹⁸ The synthesis of 2-oxazolines starting from aldehydes or even benzyl alcohols in the presence of an oxidizing reagent has also been reported.¹⁹

On the other hand, the combination of PPh₃ and DDQ instead of PPh₃ and DEAD as an efficient dehydration system has been investigated by Iranpoor's group.^{20–22} The advantages of using DDQ include its high reactivity and thermal stability, and good selectivity toward desired products. The combination of PPh₃– DDQ has been successfully applied in the conversion of 2-hydroxy-benzaldehyde oximes to 1,2-benzisoxazoles in high yield (90– 95%) after a dehydration process,²⁰ the transformation of alcohols to cyanides,²¹ alkyl halides, or alkyl azides, and the conversion of diethyl α -hydroxyphosphonates to diethyl α -halo (or α -azido) phosphonates.²²

We have been interested in studying the reactivities of isoureas formed from alcohols and diimides and have reported that they provide an efficient functional group interconversion of alcohols into halides.²³ The similarity of diimide and DDQ–PPh₃ as dehydrating reagents, and the success of converting *O*-2-hydroxyalkyl isourea into 2-oxazolines¹⁵ led us to explore the reaction using DDQ–PPh₃. In this Letter, we report that DDQ–PPh₃ can efficiently convert *N*-(2-hydroxyethyl)amides into 2-oxazolines.

When *N*-(2-hydroxyethyl)benzamide (**1a**) was treated with PPh₃–DDQ in dichloromethane, a change in the color of the reaction was observed, while new spots were also found using TLC.²⁴ One spot has the same R_f as that of 2-phenyloxazoline, which was prepared separately according to a well-established method.^{13,19} Complete characterizations by spectral methods confirmed the product as 2-phenyloxazoline (Eq. 1):

^{*} Corresponding author. Tel.: +86 411 87403576; fax: +86 411 87402449. *E-mail address*: znli@dl.cn (Z. Li).


^{0040-4039/\$ -} see front matter \circledcirc 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.09.127

$$\begin{array}{ccc} O & & & \\ Ph & & \\ H & & \\ \end{array} & OH & & \\ \hline DCM, r.t. & Ph & \\ \end{array} & \begin{array}{c} O \\ Ph & \\ \end{array} & \begin{array}{c} O \\ P$$

Optimization of the conditions for the reaction of *N*-(2-hydroxyethyl)-4-methylbenzamide (**1b**) at room temperature with different solvents as shown in Table 1 resulted in product **2b** in nearly quantitative yield in 20 min when the reactions were performed in dichloromethane, 1,2-dichloroethane, toluene, THF, or 1,4-dioxane (entries 4–7). The reaction of **1a** also afforded a 96% yield of **2a** in 20 min. Compared to the fact that 24–48 h under refluxing THF conditions was needed to afford reasonable yields of 2-oxazolines via Linclau's isourea protocol, the present dehydrative cyclization is much more efficient.

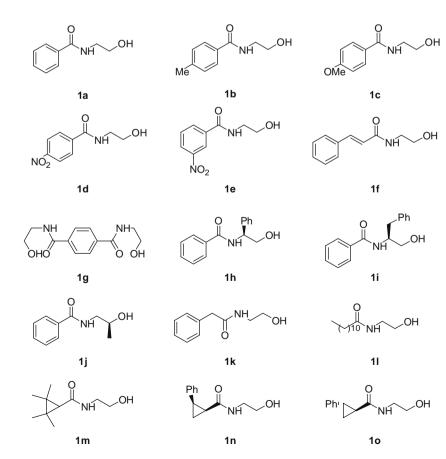
Table 1

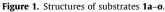
Cyclization of **1b** with PPh₃-DDQ in different solvents^a

Reaction conditions: 1b 1 mmol, 1.5 equiv PPh₃, 1.5 equiv DDQ.

The success of the cyclizations of *N*-2-hydroxylethylbenzamide and *N*-2-hydroxylethyl-4-methylbenzamide encouraged us to explore more substrates (Fig. 1), and the results are summarized in Table 2. With aroylated amino alcohols (R = Ar), >80% yields of 2-oxazolines were obtained in 20 min (entries 2–5). The use of

Table 2


Cyclization of N-2-hydroxyethylamides with PPh₃-DDQ^a



Entry	Substrate	Reaction time	Yield (%)
1	1a	20 min	96
2	1b	20 min	99
3	1c	20 min	97
4	1d	60 min	92
5	1e	60 min	82
6	1f	20 min	98
7	1g	24 h	97
8	1h	60 min	93
9	1i	60 min	97
10	1j	20 min	90
11	1k	24 h	70
12	11	24 h	93
13	1m	24 h	91
14	1n	24 h	73 ^b
15	10	12 h	80

^a Reaction conditions were the same as those in Table 1 except that dichloromethane was employed as the solvent.

^b Contains 3.2% of trans isomer in the products.

N-(2-hydroxyethyl)*trans*-cinnamamide also resulted in a high yield of the oxazoline (entry 6). The reaction of bis-N,N-(2-hydroxy-ethyl)amide with PPh₃-DDQ also occurred, even though it proceeded slowly, requiring 24 h for a complete conversion (entry 7), whereupon a bisoxazoline was obtained.

Amides derived from chiral amino alcohols may form enantiopure oxazolines if no racemization occurs in the conversion. Thus, (*S*)-*N*-(2-hydroxy-1-phenyl-ethyl)-benzamide and (*S*)-*N*-(1-benzyl-2-hydroxyethyl)benzamide of >98% ee were used as the starting materials. Under the same reaction conditions, enantiopure oxazolines of >98% ee were obtained²⁵ (entries 8 and 9). The use of substrate **1j**, which bears an α -chiral center, also yielded optically active product in high yield in a short time. However, the reaction was slow when the substrate was a secondary alcohol. For example, the amide derived from (1*S*,2*R*)-2-amino-1,2-diphenylethanol did not react completely even after 24 h at room temperature.

According to the literature, 2-alkyloxazolines are more difficult to synthesize than their aryl analogues.²⁶ Therefore, the cyclizations of *N*-(2-hydroxyethyl)alkylamides were also explored. In these cases, longer reaction times of about 24 h are necessary to produce the oxazolines in high yields (entries 11 and 12). The presence of a cyclopropyl ring is tolerated in the process (entries 13–15). When *trans-*, *cis*-cyclopropyl carboxylic amides were used, the expected corresponding products were obtained. The stereochemistry of the cyclopropyl ring was largely unchanged in the cyclization of the *trans* oxazoline was observed (entry 14).

In summary, the cyclization of *N*-2-hydroxylamides with PPh₃– DDQ is an efficient method to synthesize 2-oxazolines. It is applicable to aliphatic and aromatic carboxylic acid derivatives, and the synthesis procedure is simple and high yielding.

Acknowledgments

We are grateful to the NSFC for financial support (Grant No. 20672016). Ms. Huiying Chen is thanked for recording the NMR spectra.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.09.127.

References and notes

- 1. Wipf, P.; Miller, C. P. J. Am. Chem. Soc. 1992, 114, 10975.
- (a) Braga, A. L.; Galetto, F. Z.; Taube, P. S.; Paix, M. W.; Silveira, C. C.; Singh, D.; Vargas, F. J. Organomet. Chem. 2008, 693, 3563; (b) Saravanan, P.; Corey, E. J. J. Org. Chem. 2003, 68, 2760.
- 3. Yang, D.; Yip, Y.-C.; Wang, X.-C. Tetrahedron Lett. 1996, 38, 7083.

- Lee, Y.-J.; Lee, J.; Kim, M.-J.; Jeong, B.-S.; Lee, J.-H.; Kim, T.-S.; Lee, J.; Ku, J.-M.; Jew, S.-S.; Park, H.-G. Org. Lett. 2005, 7, 3207.
- (a) Caplan, N. A.; Hancock, F. E.; Page, P. C. B.; Hutchings, G. J. Angew. Chem., Int. Ed. 2004, 43, 1685; (b) Moyano, A.; Rosol, M.; Moreno, R. M.; López, C.; Maestro, M. A. Angew. Chem., Int. Ed. 2005, 44, 1865; (c) Evans, D. A.; Wu, J. J. Am. Chem. Soc. 2005, 127, 8006; (d) Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942.
- 6. Bandgar, B. P.; Pandit, S. S. Tetrahedron Lett. 2003, 44, 2331.
- 7. Kangani, C. O.; Kelley, D. E.; Day, B. W. Tetrahedron Lett. 2006, 47, 6497.
- (a) Albano, V. G.; Bandini, M.; Monari, M.; Marcucci, E.; Piccinelli, F.; Umani-Ronchi, Achille. J. Org. Chem. 2006, 71, 6451; (b) Trudeau, S.; Morken, J. P. Tetrahedron 2006, 62, 11470.
- 9. Zhou, P.; Blubaum, J. E.; Bums, C. T.; Natale, N. R. Tetrahedron Lett. 1997, 38, 7019.
- (a) Mirkhani, V.; Moghadam, M.; Tangestaninejad, S.; Kargar, H. Tetrahedron Lett. 2006, 47, 2129; (b) Wu, J.; Sun, X.; Xia, H.-G. Tetrahedron Lett. 2006, 47, 1509; (c) Jnaneshwara, G. K.; Deshpande, V. H.; Lalithambika, M.; Ravindranathan, T.; Bedekar, A. V. Tetrahedron Lett. 1998, 39, 459.
- 11. Nishiyama, H.; Soeda, N.; Naito, T.; Motoyama, Y. Tetrahedron: Asymmetry 1998, 9, 2865.
- 12. (a) Vorbrüggen, H.; Krolikiewicz, K. *Tetrahedron* **1993**, 49, 9353; (b) Wu, X.-W.; Zhang, T.-Z.; Yuan, K.; Hou, X.-L. *Tetrahedron: Asymmetry* **2004**, *15*, 2357.
- (a) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561; (b) Clariana, J.; Comelles, J.; Moreno-Manas, M.; Vallribera, A. Tetrahedron: Asymmetry 2002, 13, 1551.
- (a) Alexander, K.; Cookb, S.; Gibsona, C. L. Tetrahedron Lett. **2000**, 41, 7135; (b) Kurosu, M.; Porter, J. R.; Foley, M. A. Tetrahedron Lett. **2004**, 45, 145; (c) Davies, I. W.; Gerena, L.; Lu, N.; Larsen, R. D.; Reider, P. J. J. Org. Chem. **1996**, 61, 9629; (d) Reddy, L. R.; Saravanan, P.; Corey, E. J. J. Am. Chem. Soc. **2004**, 126, 6230.
- 15. Crosignani, S.; Young, A. C.; Linclau, B. Tetrahedron Lett. 2004, 45, 9611.
- (a) Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165; (b) Hisamatsu, Y.; Hasada, K.; Amano, F.; Tsubota, Y.; Wasada-Tsutsui, Y.; Shirai, N.; Ikeda, S.; Odashima, K. Chem. Eur. J. 2006, 12, 7733.
- 17. Kangani, C. O.; Kelley, David E. Tetrahedron Lett. 2005, 46, 8917.
- (a) Roush, D. M.; Patel, M. M. Synth. Commun. 1985, 15, 675; (b) Galéotti, N.; Montagne, C.; Poncet, J.; Jouin, P. Tetrahedron Lett. 1992, 33, 2807.
- 19. Ishihara, M.; Togo, H. Tetrahedron **2007**, 63, 1474. 19.
 - Iranpoor, N.; Firouzabadi, N. H.; Nowrouzi, N. Tetrahedron Lett. 2006, 47, 8247.
 Iranpoor, N.; Firouzabadi, H.; Akhlaghinia, B.; Nowrouzi, N. J. Org. Chem. 2004,
 - 69, 2562.
 - 22. Firouzabadi, H.; Iranpoor, N.; Sobhani, S. *Tetrahedron* **2004**, 60, 203.
 - 23. Li, Z.; Crosignani, S.; Linclau, B. Tetrahedron Lett. 2003, 44, 8143-8147.
 - *Typical procedure for the conversion of N-2-hydroxyethylamide into 2-oxazoline:* 24. PPh₃ (0.393 g, 1.5 mmol), DDQ (0.341 g, 1.5 mmol), and 5 mL of DCM were added to a dried Schlenk tube under an argon atmosphere, and the mixture was stirred at room temperature for 3 min. N-(2-Hydroxyethyl)benzamide (1a, 0.165 g, 1 mmol) was then added. The color of the mixture changed to yellow and a precipitate was formed. After 20 min, TLC showed the absence of the substrate, and the presence of a spot corresponding to a new compound. The mixture was then washed with aqueous NaOH solution (5%, 40 mL), and the separated water laver was back-extracted with DCM ($15 \text{ mL} \times 4$). The combined organic layers were washed with brine, and dried with anhydrous Na₂SO₄. Filtration and evaporation of the solvent followed by column chromatographic separation (silica gel) using petroleum ether/ethyl acetate (4:1, v/v) gave the corresponding 2-phenyloxazoline (**1a**, 0.156 g, 96%). oil, ¹H NMR (400 MHz, CDCl₃, 25 °C): δ 7.95 (d, *J* = 7.2 Hz, 2H), 7.48–7.40 (m, 3H), 4.44 (t, *J* = 9.6 Hz, 2H), 4.07 (t, *J* = 9.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ [M+1]*, 147 (67) [M]*, 117 (100). IR (Nujol): 2931, 1651, 1529, 1493, 1456, 1346, 1269, 1201, 1038, 967, 899, 712, 607 cm⁻¹
 - The ee was determined by optical rotation: (a) Kamata, K.; Agata, I. J. Org. Chem. 1998, 63, 3113; (b) Katritzky, R.; Cai, C.; Suzuki, K., et al J. Org. Chem. 2004, 69, 811.
 - Mohammadpoor-Baltork, I.; Khosropour, A. R.; Hojati, S. F. Catal. Commun. 2007, 8, 200.